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ABSTRACT
Coordinating modeling and real-world data is central to building
scientific theories. This paper examines how a complementary focus
on modeling and data contributed to 8th grade students’ learning
of mechanisms underlying wildfire smoke spread in MoDa, a web-
based environment that integrates computational modeling side-by-
side with real-world data for comparison and validation. Epistemic
network analysis of student responses in pre-post tests revealed a
shift from primarily macro-level explanations to explanations that
integrated macro and micro-level explanations of the phenomenon.
Video data analysis revealed three design elements that contributed
to student learning: Naming of the blocks, match between data
and model visualization, and collective reflections on models. We
reflect on implications for the design of environments that integrate
computational modeling with real-world data analysis.

CCS CONCEPTS
• Applied computing → Education; • Human-centered com-
puting → Human computer interaction (HCI); Interaction
design.
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1 INTRODUCTION AND THEORETICAL
BACKGROUND

In K-12 science education, modeling and data practices are seen as
central to student learning [1]. There has been research on develop-
ing learning technologies to support these practices in classrooms.
For instance, domain-specific modeling tools—in which the build-
ing blocks for a model are named and defined in the context of a
specific phenomenon or domain—have been found to be readily in-
terpretable for students [2, 9, 12, 18]. Research with these modeling
tools have shown that they support mechanistic reasoning about
phenomena [5, 16]. Similarly, students benefit from meaningful
engagement with data in scientific inquiry activities, both in terms
of science learning, and understanding of the nature of data [10].
General educational tools such as CODAP (Common Data Analysis
Platform) help students manipulate, transform and visualize differ-
ent types of data [3]. Other tools enable students to analyze fixed
curated datasets (e.g., BGuILE [11]), or help collect and analyze
real-world data from sensor-based measurement tools [15].

Few technologies facilitate an integrative approach by enabling
students to coordinate between modeling and real-world data [4].
This is a missed opportunity, as integrating modeling and real-
world data can be productive for science learning [6, 7]. Without
tools that interweave real-world data analysis with model simu-
lations, it is difficult to engage students in computational models
and real-world data for theory building. This paper presents a pilot
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study of MoDa, a web-based environment for interweaving com-
putational modeling and real-world data analysis for comparison
and validation. This study was conducted as part of a larger project
to investigate ways to make computational modeling a sustained
practice in middle school classrooms. This paper examines how a
unit enacted with MoDa supported student learning of mechanisms
underlying the scientific phenomenon of wildfire smoke spread.

2 DESIGN OF THE HOWWILDFIRE SMOKE
SPREADS MODULE WITH MODA

MoDa is a web-based environment that juxtaposes computational
modeling side by side with real-world data for comparison and vali-
dation. The environment includes a modeling area and a real-world
data area. The modeling area consists of (1) A Coding workspace
where learners program their models using a library of domain-
specific blocks. This is a custom block-based coding tool built on
Google’s Blockly library; (2) A Simulation workspace where stu-
dents can run and manipulate the model they built in the coding
workspace. Models are generated using the NetLogo engine [17];
and, (3) A Model Data Visualization area that displays plots for
selected data generated by the model in real time.

A real-world data area is also being developed to support dif-
ferent data types and data sources.These can be qualitative, like
video recordings or images, or quantitative, like data loaded from
csv files or streamed live from digital sensors. Data sources can
be physical experiments, quantitative measurements with sensor-
equipped microcontrollers taken by students, or publicly-available
quantitative datasets like (NASA’s open-data platform). Students
can examine the real-world data in comparison with the simulated
data from their models, in real-time or asynchronously, to inform
and evaluate their models. A prototype real-world data area was
used for this study in which students were provided with a two
relevant video clips, though they could not yet upload their own
real-world data.

In the How Wildfire Smoke Spreads module, students compare
computational agent-based models with satellite video data of wild-
fires to explore how interactions between micro-level entities of air
and smoke particles impact the macro-level phenomenon of smoke
spread. Two key ideas drive the module: (1) Diffusion and wind
effects interact to create different patterns of smoke spread; and (2)
Temperature gradients around a wildfire differently impact PM2.5
and PM10 particles, causing the lighter PM2.5 particles to travel
further. This pilot study focuses on the first key idea.

2.1 Modeling: Building computational
agent-based models

In the How Wildfire Smoke Spreads module (figure 1), students are
presented with a bird’s eye-view of a landscape. The block library
includes three categories of blocks. Property blocks allow then to
create air particles and smoke particles and set their properties such
as speed or color. Action blocks model the behavior of particles:
“move” which causes particles to move along a trajectory, “bounce
off" which causes particles to bounce off each other when they
collide, and “apply wind” which causes the particles to update their
trajectories to follow direction and speed specified by correspond-
ing wind direction and speed sliders. Control blocks can be used

to specify behaviors for when a particle touches another particle.
Some blocks are "unpackable" (differentiated by a plus sign) and as
such serve as functions that aggregating other blocks into ready-
made routines. One example is the "interact" block, which wraps
together control structures with the "bounce off" block to create a
behavior where particles bounce off one another when touching.

Figure 1: MoDa showing a wildfire smoke model during a
run alongside sattelite video. Note that the speed setting in-
cludes a degree of randomness, creating multiple circles of
smoke particles.

2.2 Real-world data: Analyzing video data of
wildfire smoke for comparison & model
validation

Students have access to two clips of wildfire smoke spread selected
from publicly available satellite video data. The videos are meant
to draw students’ attention to contrasting patterns in the shape of
smoke: In the presence of strong winds, smoke spreads in the shape
of a cone while in milder wind conditions, diffusion plays a more
important role, causing the smoke to spread all around. The video
clips are intended to encourage students to compare and validate
their models to simulate the shape of smoke spread under different
conditions. The video clips for this study were selected from a local
wildfire that took place two months before the lesson.

3 THE STUDY
We ask: How did the complementary focus on data and modeling
contribute to student learning of the mechanisms underlying smoke
spread? Thus we examine how student responses shifted from the
pre- to post-test, and how the design contributed to those shifts.
The study was conducted in four 8th grade science classes taught
by the same teacher in a public school in the Bay Area, California,
and took place over 2 science class periods and lasted for 2 hours 25
minutes. The science teacher and a researcher co-taught the classes.

3.1 Unit Sequence
The unit sequence is presented in figure 2. Due to space constraints,
we only describe the second part of the unit (items 3-8 in the fig-
ure). After an introduction (1) and student drawing (2), the research
facilitator introduced the MoDa environment and asked students
to add smoke and air particles to a model, and make them move (3).
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After this, the facilitator projected two or three student models and
led a discussion around the model code and resulting simulation
(4). In the data analysis activity (5), the teacher presented the two
videos described in section 2.2 and asked students to analyze the
“path” and “shape” of smoke spread. In the following whole-class
discussion (6), the teacher asked students to share their interpre-
tations and propose explanations for the differences in patterns.
In the second modeling activity (7), students revisited their initial
models to recreate the patterns they noticed in the videos. Finally,
the facilitator led a whole-class discussion (8) using and two or
three student models an occasionally modifying them to better fit
the data.

Figure 2: Unit sequence

3.2 Data Collection and Analysis
A total of 87 students consented to be in the study. Of these students,
we focus our analysis on 33 students from two classes in which
we implemented a pre- and post-test. The test was designed to
assess their understanding of how diffusion and wind impact visual
patterns in the spread of wildfire smoke. The test included one
open-ended question and two multiple-choice questions. Because
of space constraints, we only present our analysis of the open-ended
question which asked: “On September 9, 2020, the sky around the Bay
Area appeared red as smoke from fires around Northern California
blotted out the sun. However, the closest fire was more than 50 miles
away. How do the smoke particles make their way through the air?”.
In addition, we video-recorded two to three focal pairs of students
in each class (18 students) and all whole-class discussions of student
models and data analysis.

To examine shifts in student responses from pre to post, we
used epistemic network analysis (ENA) [14]. ENA is a technique to
track expressed knowledge about key ideas and how those ideas
are connected with each other. This analysis generates a graph in a
two-dimensional Cartesian space (figure 3). In this graph, the codes
applied to a unit of analysis (here, individual student responses)
are represented as nodes positioned in the space. The position-
ing of nodes is done using optimization routines that maximize
the differences between two groups (here, pre- and post-test re-
sponses). The resulting locations of nodes in an ENA graph can be
used to interpret the dimensions of the projected space. For our
research purposes, employing ENA showed us the frequency of
co-occurrences or the strength of association between our codes
in student responses, and whether or not they shifted from pre to
post.

Our coding scheme draws on an existing framework for mecha-
nistic reasoning [13] and was iteratively developed to represent the
entities, properties and behaviors in this system. Two researchers
independently coded student responses and used this framework
to identify codes relevant to the phenomenon based on student
responses. Through subsequent rounds of coding, 13 codes were
finalized (See coding scheme in Appendix A.1). ENA was applied

to the coded responses to graphically represent the shift in the
frequency of codes and the co-occurrence of codes from pre- to
post-test.

In addition, we analyzed video data of the three whole-class
discussions (marked in green in the instructional sequence) from
one class section. We chose to analyze these discussions because
they included multiple student models and played a critical role in
how students came to integrate data and modeling to build expla-
nations about this phenomenon. We used collaborative viewing [8],
in which multiple researchers collectively interpreted the videos
and corresponding student models. This involved noting moments
of shift towards identifying relevant micro-level entities and behav-
iors and linking them to the macro-level phenomenon of smoke
spread. These moments were transcribed and analyzed to identify
specific design elements that seemed to support the shift.

4 FINDINGS
4.1 How did student responses shift from pre

to post?
The ENA graph in figure 3.a shows individual student responses as
colored circles: The red circles represent student responses at pre,
the blue circles represent student responses at post, and the black
circles are specific codes that were used to analyze the data. As can
be seen in the figure, from pre to post, student responses shifted
from the left side of the graph to the right side. A closer look at
the placement of the nodes reveals that the quadrants on the left
and right side represent qualitatively different nodes and student
responses. Broadly, the left side represents macro-level entities (e.g.,
smoke, wind) and their behaviors (e.g., blow, spread). In contrast,
the right side represents micro-level entities (e.g, particles) and
their behaviors (e.g., “push” and “bounce”). Note that the nodes
towards the middle (e.g., “strength” and “direction”) are ones that
cannot be strictly categorized as either macro or micro. Finally, the
weighted links in Figure 3.a represent a comparison of frequency
of word associations between average pre and post answers.

The shift from pre to post was found to be statistically significant.
Along the X axis, a two sample t test assuming unequal variance
showed student pre-test reponses (mean=-0.36, SD=0.45, N=33)
were different from post-test responses (mean=0.36, SD=0.409, N=33)
at the alpha=0.05 level (t(63.34)= -6.85, p<0.001, Cohen’s d=1.69).
This shift is also reflected in the comparison between average net-
works for pre- and post-test responses, represented by the weighted
connections between nodes. The thick red connections between
"smoke," "wind," and "blow" indicate that associating those macro-
level codes was more common at pre than post. The thick blue
connection between "smoke," "particles," and "bounce" indicates
an increase in students describing smoke and its behavior from
an agent-level perspective. For example, one student’s response
shifted from “[...] the more things burn, more smoke is produced and
the air current spreads out the smoke.” to “The smoke particles
interact with the air particles. The smoke particles bounce off the
air particles so the smoke moves in the direction the air is moving
since air applies wind. [...]”, after the unit (Figure 3.b).
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Figure 3: Plots generated fromENA: (a) networks for student
responses; (b) example of an individual student’s response at
pre and post.

4.2 How did the design support shifts in
student responses from pre to post?

We found that three design elements played an important role in
supporting student learning. The naming of blocks using simple,
domain-specific language helped them reason about the function of
a block. Thematch between visualizations of real and simulated
data enabled them to use the data to inform and evaluate their
models. And, collective reflection on models through whole-
class discussions engaged students in a scaffolded analysis and
comparison. In what follows, we describe three episodes from our
data, drawn from whole-class discussion and listed chronologically,
that illustrate how these design elements played a role in furthering
student thinking.

4.2.1 How naming of the blocks (#1) and collective reflection (#3)
supported initial observations and explanations of smoke spread. The
first collective reflection established this activity as one in which
students were to identify connections between code and patterns
(or lack of) in the movement of air and smoke particles. For instance,
when comparing the difference in the code of two student models,
students noted that there was a smaller number of particles in the
initialization of one model. Upon running the model, the facilitator
asked if they could tell there were fewer particles visually. Jason said,
“[...] it’s like they start as one circle of particles that are all covered, but
once they spread out you don’t really see many.” This student noticed
that, in the beginning, all smoke particles are clumped together
in a circle, but when they start dispersing, it was clear that there
weren’t many particles. (Figure 4a)

Linking the movement of particles in the simulation with the
code was further aided by the design of the block names. In this
first collective reflection, many students had only used some of the
blocks in the library. Yet the names of the blocks supported students
in generating explanations of how the code worked. When the class
was making predictions about another student’s model code (Figure
4b), one student said, “Well when it says all particles, and they’re
allmoving, then when you apply wind, they’re probably going to
interact with the wind and bounce off ”. This student relied on the
block names (apply wind, interact, and bounce off) to interpret what
the code would do. Others used the block names to provide a more
mechanistic explanation; for instance, “Well it says they’re going
to bounce off of each other, so I think once they bounce off each
other, they’re going to kind of spread out and make the green a
little bit more visible”. This student used the block “bounce off” to

link the macro level outcome of “spreading out” of the smoke with
the micro-level behaviors followed by individual smoke particles.
In this way, collective reflection anchored the visual phenomenon
of smoke spread and explanations using code as focal points. It also
set students up for the video analysis task that followed.

4.2.2 How the match between visualizations (#2) supported the com-
parison between models and data. The video analysis activity was
designed for students to attend to the “shape” of the smoke spread
(a “cone” in strong wind v/s a “circle” in weak wind) in the two
videos (See video screenshots in Figure 5b). In the whole-class dis-
cussion, students quickly came to consensus that the wind strength
and direction explained the difference between the shape of smoke
spread in the two videos. For instance, one student asserted that
in the first video, “the wind was blowing the smoke more towards
the northeast side” while “in the second video there wasn’t really
much wind”.

In the final discussion, students shared that they included strength
and direction of the wind to match their model to the video data. For
instance, in Figure 5a, the student tried to match not only the cone
shape, but the specific direction of smoke in the video by setting
the wind speed to “medium” and the heading to “right” under the
“apply wind” block. Similarly, one student observed during a class
discussion that the shape of the smoke in the simulation was like a
“circle”, others agreed that it matched the second video. When the
facilitator asked the class to predict what the simulation would look
like if the wind speed was higher, students responded that it would
look like the first video in which “it started off as a big line and then
it separated into two and then eventually it turned into a big cloud.”
The match between the data and the simulation visualization gave
them a visual reference of what their model simulation should look
like.

Figure 4: (a) Two student models, one with more smoke par-
ticles (left) and one with fewer smoke particles (right). (b)
Another student’s model which used more particle actions.

4.2.3 How block names (#1), visualization match (#2) and collec-
tive reflection (#3) contributed to mechanistic reasoning. The final
collective reflection also revealed that all three design elements
contributed to students being able to explain code and reason about
mechanism. Student model 5a, initially resulting from an effort to
match visual features of the video and model, also offers an example
of this next step in reasoning. When asked to describe the model
code, the student said “I added more smoke particles than air
particles, and I asked the air particles to apply wind and make
it move right at medium speed, and then I asked all particles
to interact by touching any particle it would bounce off and
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move.” This student’s description included many of the necessary
elements to model this phenomenon.

The facilitator then told students he would make three changes
to this code to have it more closely match the data. He set the speed
of air particles to “wind speed”, the heading to “wind direction,”
and increased the number of air particles (Figure 5a). Manipulating
the slider for wind speed in this modified model could make the
simulation flexibly resemble one video or the other (Figure 5b).
Though no students we observed generalized the model in this way,
they were able to explain the resulting patterns in terms of causal
mechanism. For instance, on running the modified model with
a high wind speed, the facilitator asked students to explain how
the code resulted in a cone shape in the simulation. One student
explained that “there’s so much air particles that it’s kind of push
the smoke particles towards the same direction”. In this explanation,
the student recognized that the air particles represented the wind
(“towards the same direction”) and that collisions between the air
and smoke particles led to the smoke blowing in the same direction
as the wind.

Figure 5: (a) Student’s model before and after the facilitator
edits and (b) the resulting model output at different wind
speeds compared with satellite video data of smoke spread
shown to students (blue shape highlighting added for this
paper).

5 DISCUSSION: DESIGNING TO SUPPORT
COORDINATING MODELING AND
REAL-WORLD DATA

Here, we reflect on the role of each design element named above
and how it relates to our broader design goal.

The naming of the blocks helped students link the visual move-
ment of the particles in the simulation with the blocks code, and
connect the macro-level outcome with the micro-level behavior of
particles. One challenge we face is how closely to align the language
within the blocks and environment with the language students use
to interpret the data. For instance, when interpreting the data, stu-
dents used cardinal direction to describe the wind. However, in
Logo-derived languages such as NetLogo on which our environ-
ment is built, the “heading” is defined as 0-360 degrees. We are now
considering using cardinal directions to align with how students
readily describe the data.

The match between the data and the simulation visualizations
made it possible for students to visually transition from the model
to the data as they made comparisons to inform their modeling

process. However, this visual matching has raised tensions around
maintaining the same scale and time in the data and model while
making the necessary abstractions visible for students to attend
to. For instance, we had to strike a balance between making the
visualization look like smoke without losing the agent perspective
of being able to see individual smoke particles.

The whole-class collective reflection provided a way to make
student ideas explicit, and then developed and refined through dis-
cussion of models. However, it was not straightforward for the fa-
cilitator to project multiple student models for discussion, as he had
to quickly load student models on his computer in the middle of the
discussion. To support seamless collective reflections with student
models, we are designing a feature within the MoDa environment
for teachers to view and tag student models and make modifications
to their code without actually changing a student’s saved model.
Moreover, in these collective reflections, the teacher and research
facilitator made several moves to help students consider the more
generalized potential function of models to accommodate multiple
presentations of data. We are analyzing these moves to inform the
design of professional development for our partner teachers.

Looking ahead, we are working towards extending design el-
ements identified in this study that will translate to other data
sources beyond video. Expanding the design to include a wider
range of data types will broaden the field’s understanding of how
to juxtapose computational modeling and real-world data for com-
parison and model validation.

6 SELECTION AND PARTICIPATION OF
CHILDREN

87 students consented to participate in the study. The science
teacher used curriculum that included computer simulations and
thought students would be excited to get to build their own. They
described the study as an opportunity for students to meet with
researchers who "do work in science" and to build computer mod-
els. We prepared a letter for teachers to share with families that
described study procedures, what data that would be collected and
how it would be shared in language understandable to adolescents.
The teacher emailed this letter and the consent form to parents and
guardians, inviting all students to participate. Students were told
that they would do the lesson even if they chose not to be a part
of the study. Three authors of this paper joined the class on Zoom
to briefly describe their professional careers. The researcher who
was in class (also a co-author on this paper), also answered student
questions about his major in college and professional trajectory.
This seemed to be of interest to many students.
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A CODING SCHEME
Entities: Smoke/air/wind/particles; Properties: Direction/strength;
Behaviors: Blow/bounce/carry/move/push/spread/travel
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