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Figure 1: Liquid Handling Robot (LHR) hardware and programming environment.

ABSTRACT
Computational thinking (CT) is necessary for Science, Technology,
Engineering, and Mathematics (STEM) literacy, but it can be diffi-
cult for many students to develop and it is challenging to integrate
into science curricula. Here, we present a five-session curriculum
where sixth-grade students programmed a Liquid Handling Ro-
bot (LHR) to conduct a science experiment while engaging in CT.
We used a mixed-methods approach to assess how the curricular
integration of robotics and science experimentation advances stu-
dents’ CT skills and perceptions of computation in science. We
identified growth in CT skills, specifically regarding Algorithmic
Thinking. Students identified as key advantages of this approach
the increased precision in experimental procedures, time-efficiency,
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and easier debugging. This course provides a proof of concept cur-
riculum on how the implications for teaching and learning of CT
can be assessed, and how CT and robotics can be brought to science
classrooms, especially for chemistry and biology.
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1 INTRODUCTION
Computer science education has been implemented in K-12 educa-
tion both as a stand-alone discipline and as a way to incorporate
coding into existing disciplines such as science or mathematics
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[2, 20, 23, 33] based on the argument that computational think-
ing (CT) is a fundamental skill relevant for all students and to
many subject areas [39, 40]. Bringing CT approaches and skills
into the classroom can deepen the learning of mathematics and
science content, especially when applied in integrated curricula
[4, 7, 12, 28, 29, 37]. Reciprocal enrichment of computation and
science learning is powerful because science curricula can provide
meaningful contexts within which CT can be applied [13, 17, 36].
CT concepts can be mapped onto a variety of conventional school
subjects. For example, decomposition can be used in language art
or as abstraction in a science classroom [3]. The integration of CT
into science curricula in K-12 has not been widely adopted, and the
deconstruction of CT’s boundaries with other fields is in need of
greater attention [2].

Students who engage in hands-on science display a more posi-
tive perception of science learning and a deeper understanding of
scientific concepts when compared to ones engaging in traditional
textbook science [9]. Problem-based active learning positively im-
pact students’ academic performance and attitudes towards their
science courses [1]. Several frameworks for the integration of CT
into K-12 science curricula have been proposed; however, these are
often digital in nature and lack the hands-on or lab component of
traditional science education [36].

Here we present a pilot study where CT was integrated with
science education through a week-long curriculum designed for
sixth-grade students. Students had to program a liquid handling
robot (LHR) to perform complex, multi-step chemical experiments
using a block-based programming language [25]. These experi-
ments are motivated by (1) the current lack of automation and
programming in ’wet science’ education (biology, chemistry), espe-
cially when compared to robotics or physics [10, 38]; (2) increasing
automation in the professional life-sciences, e.g., high-throughput
pipetting robots [19]; and (3) the recent advancement of accessi-
ble, interactive biology technologies [11, 18, 22, 24, 27], biological
cloud labs [14, 15, 35], biotic games [6, 21, 30] and low cost LHRs
[8, 10, 16]. Our main questions are: Which of students’ CT skills
does this approach improve, and what are students’ perceptions of
the affordances of this approach?

2 METHODS
Participants and setting: Eleven 6th grade students (7 male,

4 female; 9 Asian, 2 ethnicity not stated) were recruited as part of
an elective class in a public school setting in the San Francisco Bay
Area (USA). Few students (2 or 3) had any coding experience; the
others never had coded before, nor heard about the concepts of pH,
robotics, or programming a robot. Students worked in groups of
two (one group had three students), and each group used their own
LHR.

The Liquid Handling Robot (LHR): Liquid handling robots
(LHRs) are common in research labs [19], which allow for fast, high-
throughput and reproducible results, therefore enabling scientists
to investigate thousands of combinations of different reactions or
conditions. Here we used an LHR that was intended to convey these
features to middle and high-school students (Fig.1). The technical
details of this LHR utilized will be published elsewhere [8], has
equivalent functionality to our previously published Lego robot

[10], and can perform equivalent biology, physics and chemistry
experiments. Briefly, the LHR holds a pipette to load and dispense
liquids (Fig.1). It is has four motors to drive the pipette plunger in
and out and to move the pipette along three dimensions. Standard
plasticware such as multi-well plates and cuvettes are held by the
robot. The hardware is made from laser-cut acrylic, standard elec-
tronic parts, and an Arduino. The LHR can be programmed through
a Snap4Arduino environment.

Lesson Plan and Study Design: We developed a five-session
curriculum (50 minutes per session) to engage students in CT in
the science classroom through a project-based and inquiry-driven
environment while employing practices aligned with the Next Gen-
eration of Science Standards (NGSS) [5]. The LHR aimed to position
students as scientists that could directly experience how techno-
logical advances can accelerate scientific research, furthermore to
introduce the idea of encoding the procedures of a science experi-
ment through a computer program, thereby integrating computing
and scientific work. The content specific learning goals were to
develop students’ understanding of pH (relevant for chemistry and
biology) and to teach students how to program a robot to execute a
scientific experiment.

Session 1 - Introduction and Automation: After a short project
outline, students were introduced to the concept of automation.
Students gave examples from everyday life where they experienced
automation, and then they discussed its advantages and limitations.
We then introduced the LHR by explaining that commercial and
academic labs use tools like the LHR to accelerate medical research.
Then students conducted a manual experiment (Fig.2A,B): They
were tasked to use a syringe to fill a 96-well plate with exactly
two drops of water per well and to time themselves. Our aim was
to guide students to reflect upon the advantages of automation in
science and the limitations of manual work.

Session 2 - Learning about Computer Instructions: In order to
understand algorithms and how to create them, students were in-
structed to create step by step instructions to make a peanut butter
and jelly sandwich (Fig.2C). This assignment exposed students to
the importance of sequential thinking and precision in task spec-
ification in programming. Following these student instructions
literally, researchers attempted to make sandwiches which was
not successful at first. For example, students would write instruc-
tions to put the peanut butter on the bread, which when taken
literally, resulted in placing the jar of peanut butter on top of the
bread. Through this experience, students learned that instructions
need to be specific and broken out into ordered sub-steps. Students
were also able to identify flaws in their instructions that could then
be corrected, introducing them to the idea of iterative design and
debugging.

Session 3 - Programming the LHR: This session shifted from ex-
clusive CT instruction to the introduction of a scientific experiment
(Fig.2D-I). Students were asked about processes for maintaining a
swimming pool’s cleanliness, and then taught about the function
of chlorine, the concepts of pH, alkalinity, acidity, and the use of
phenol red as an indicator to measure pH (Fig.2F). Next, students
were introduced to writing block code using Snap4arduino in order
to program the LHR (Fig.1,Fig.2G,H) to rinse the syringe with water
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Figure 2: Illustration of student tasks: A,B) Manually filling a 96-well plate and timing this activirty. C) Procedural preparation
of peanut-and-jelly sandwiches. D,E) Operating robot and programming interface. F) Measuring pHwith phenol red and color
chart. G) Developing pseudocode. H) Programming. I) Pre-and post-test pseudocode example (session 3 vs. 5).

Table 1: Rubric to evaluate students’ pseudocode. Score 0, 1, 2 equals number of criteria achieved per CT skill (except for
Algorithmic Thinking: 1 equals correct sequence was completed, 2 was given for additionally words like “chlorine indicator”
or “red stuff”).

CT Skills Criteria
Abstraction: The skill to decide what Keywords: “intake”, “go to”, “down”,
information about an entity/object to keep “up”, “dispense” (at least 3);
and what to ignore [39]. Representation: “x=1”, “A1 - sample1”
Decomposition: The skill to break a Defines action/event;
complex problem into smaller parts that are easier Uses definition
to understand and solve [4, 39].
Algorithmic Thinking: The skill to devise a Correct sequence: Go to cuvette x; Intake from cuvette;
step-by-step set of operations/actions of how to go Go to well y; Dispense into well; Rinse (optional); Sequence
about solving a problem [32]. is shown for cuvettes 1,2,3 AND mention values e.g. 0.6mL
Generalization: The skill to formulate a solution in Groups a chunk of code
generic terms so that it can be applied to different and indicates with arrow/”repeat”;
problems [32]. States “repeat x amount of times”

Table 2: Results for 11 students on evaluating their pre- and post-test pseudocode (compare to Table 1 regarding the four CT
skills). 1-tailed t-test on whether average increased from pre- to post-test: ** p<0.01; * p<0.05; (*) p=0.057; all others n.s..

————————- Pre-test ————————– ————————– Post-test —————————
Student 1 2 3 4 5 6 7 8 9 10 11 Avg 1 2 3 4 5 6 7 8 9 10 11 Avg Diff
Abstr 1 2 2 1 2 2 1 1 1 1 0 1.3 0 2 2 2 1 1 2 1 0 2 1 1.3 0.0
Decom 0 0 1 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 2 0 0 0 1 0 0.3 0.2
Algor 2 0 0 0 0 0 0 0 1 1 0 0.4 2 2 1 1 1 1 2 2 1 1 1 1.4 1.0**
Gener 2 1 0 1 0 0 0 0 0 2 0 0.5 2 2 0 2 0 2 1 2 0 2 0 1.2 0.7(*)
Sum 5 3 3 2 2 2 1 1 2 4 0 2.3 4 6 3 5 2 6 5 5 1 6 2 4.1 1.8*
Po-Pr -1 3 0 3 0 4 4 4 -1 2 2 1.8*
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whilemoving between cuvettes. Students then executed correspond-
ing programming and experimental tasks (Fig.2D,E). Students were
then introduced to the problem that they would attempt to solve
using both programming and the scientific method, i.e., to measure
the pH in multiple wells by adding 0.1 mL of phenol red and where
the resulting color of the liquid would then be visually compared to
a color strip to determine the pH. Students were then tasked with
writing the corresponding pseudocode on paper (Fig.2G,I ’Pre’),
which then served as the pre-test for later analysis.

Sessions 4 and 5 - Automating an Experimenting with Code: Stu-
dents were tasked with translating their pseudocode to real code
to program the LHR and run corresponding experiments (Fig.2D,E).
Students were given two cuvettes with unknown pool water and
a cuvette with phenol red. Students wrote code so that the LHR
would add 0.1 mL of phenol red to each well to test the pool water’s
pH (Fig.1, 2F). Students then executed and iteratively debugged
their code. All groups were eventually successful in having the LHR
execute this task. Students then also provided their final (working)
pseudo-code after all experiments, which served as the post-test
for later analysis (Fig.2I ’Post’).

3 DATA SOURCE, PROCESSING, AND
ANALYSIS

We employed a mixed-methods approach to evaluate the efficacy
and plausibility of integrating CT into science curricula in the sixth
grade. These data included student pre- and post-pseudocode tasks
after session 3 and 5 (Fig.2I), and students’ post-interviews. We
also video recorded the students; an in-depth analysis is beyond
the present publication, but we highlight some key observations:
Experiment and programming were challenging for the students,
eventually they all succeeded albeit with varying level of sophis-
tication and speed. One group did a top-down paper design, then
created a rinsing block, and then asked for just water in a cuvette so
that they could debug their block from the “bottom-up.” The other
teams were considerably less advanced in their CS understanding.
These activities also stimulated students to reflect on the scientific
content, e.g., they discussed using a different indicator than phenol
red, “if the scale is 6.2-8.6, what color will it show if we have lemon
juice, with high acidity or strong acid,” and one student responded
that it would be yellow (same color as week acid) and it would not
show the actual pH. Student engagement was high as indicated by
our observations of their focused work, their eagerness to finish
tasks beyond class time, and by the teacher.

We asked students what they learned from these activities, which
revealed a combination of scientific and computational concepts,
for example: Student #1 stated that she learned how to test pH,
what phenol red is, about base and acidity (talking about the chem-
istry first), and she said “I also learned to code of course” (smiling)
and “learn to re-run it after you fix your mistakes, make sure that
when you are actually doing it, it works.” and “In science, we are
doing ocean health and the teacher always talks about pH, I never
understood what ... a pH is, and now I do.” Student 2 said “I learned
programming and a tiny bit of Chemistry like the pH stuff ... how
pH system work and difference between base and acid ... Chemistry
is important also cool to know the condition of the pool." Student 3
said "I learned that the computer is a lot more precise than hands

Table 3: The three benefits of integrating coding and science
consistently mentioned by students.

Student 1 2 3 4 5 6 7 8 9 10 % mentioned
Precision 1 1 1 1 2 2 0 2 3 1 90%

Time-Saving 2 1 2 1 4 0 1 1 3 0 80%
Debugging 0 2 2 0 2 1 0 3 2 4 70%

on and it can go much faster than hands on. When we wanted to
make the robot automated we kept failing over and over ... I learned
not to get mad when you fail on something.”

To examine students’ understanding and adoption of CT skills,
we assessed students’ pseudocode (Fig.2I) through a rubric based
on previous work by others [32, 39]. This rubric focused on four
CT skills, i.e., Abstraction, Decomposition, Algorithmic Thinking,
and Generalization (Table 1). Each skill was ranked from 0 to 2,
enabling a highest possible for pseudocode of 8. This rubric was
iteratively refined until two researchers reached 90% agreement
in assessing the pseudocode of two groups. Then the pseudocode
of all groups was assessed. Table 2 then illustrates students’ pseu-
docode (pre- and post-test) rank according to these four CT skills.
A t-test reveals that students’ pseudocode total rank average sig-
nificantly improved, i.e., 7/11 (64%) displayed a positive change,
2 no change (18%), and 2 (18%) a decrease. Averaging over all
students, Algorithmic Thinking improved most significantly, and
Generalization potentially improved as well (boarderline signif-
icant). Abstraction did not improve, but we note that it already
showed a much higher average in the pre-test compared to the
other skills. Finally, Decomposition was low in pre-test and did not
significantly improve.

In addition, 10 of the 11 students were interviewed for 20-30 min-
utes after the last session. Students were asked to discuss and define
their perspectives on the benefits of integrating coding and science
and of using a robot in order to carry out an experiment. Inter-
views were video recorded, transcribed, and qualitatively analyzed
using NVivo 12. Answers were iteratively analyzed and grouped
into categories using qualitative content analysis and a data reduc-
tion process [31]. We decided to focus on students’ perception of
learning CT in the science classroom and specifically, the bene-
fits of integrating coding and science. We created a list of themes
(nodes) which then revealed that students perceived three distinct
advantages of integrating CT with scientific experimentation when
compared to traditional manual work (Table 3): 1. Precision: the
ability to execute the experiment according to specification and
with little variation between repeats; 2. Time-saving: the potential
for requiring less human work-time to conduct an experiment; and
3. Debugging: the opportunity to refine and repeat the experiment
to improve the results.

The following excerpts from student interviews further illustrate
the advantages students perceived in using the LHR to carry out
their experiment: 1. Precision - Interviewer: “Why do you think
we use programming in science?” - Student 1: “Programming in
science, basically allowing robots to do stuff for us. And also letting
computers do more theoretical stuff. Since computers and robots
are more accurate and can do more automatic and non-human error
tasks, and they can also make more theoretical things rather than
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when humans do science it’s more experimental.” 2. Time-Saving
- Interviewer: “And why do you think we use programming in a
science class?” - Student 9: “To help make things easier so that we
don’t have to do it manually and take a lot of time.” 3. Debugging -
Interviewer: “Did you do some testing? How did you do the testing?”
- Student 8: “We first, did the first round and if there’s something
wrong with it, we fixed it and did another round of testing and then
if it was correct, we continued.”

4 CONCLUSIONS
We demonstrated that students improved their understanding of
CT through using the LHR to conduct a science experiment. Our
specific curriculum significantly improved Algorithmic Thinking.
Students connected to the science content (pH), and they were
able to identify benefits of integrating coding, robotics, and sci-
entific experimentation, i.e., precision, time-saving benefits, and
debugging. The latter suggests that errors are not hiding digitally,
but are explicitly shown in the physical world. The robot executes
a "physical computation" that can be watched and has an effect
on the real world, so students can make changes and debug the
errors [34]. Before changing a curriculum, it is also important to
assess students’ receptiveness in order to ensure acceptance of the
changes. We found that the students were able to articulate the
precision and time-saving benefits of using CT through coding
when conducting a science experiment (Table 3). This is possibly
due to students’ initially executing a similar repetitive experiment
themselves manually (Fig.2A,B). Debugging was also significantly
mentioned (Table 3), indicating that most of them had to debug
their code in order to improve the execution of their experiment.

Our work motivates future research: (1) How do students execute
these experiments and how do they go about the programming and
debugging tasks? (2) What is the permanence of CT skills taught
through physical science experiments and the relationship to stu-
dents’ receptiveness? (3) How would more complex experiments
with an LHR as demonstrated previously [10] facilitate CT and sci-
ence learning? (4) Why did some CT skills improve while others did
not (Table 2), what caused these improvements, and how does that
inform design of hardware, science experiments, and curriculum?
(5) What is the optimal synergy between digitally simulating such
activities vs. their physical implementations?

Overall, we see versatile value in integrating CT in science exper-
iments, in particular it provides additional motivation for students
to engage in those topics, and where robotics provide a suitable
modality for physical computation. This study (together with our
previous ones [10, 35]) demonstrates that there are ample, feasi-
ble, and valuable opportunities for this approach in middle- and
high-school classroom. Studies with larger student sizes and more
in depth observation and interviews for these activities would be
desirable. A low-cost commercially produced LHR similarly to the
one presented here could make such activities and curricula widely
accessible, and the recent integration of Snap with Lego Mindstorm
[26] provides another dissemination route based on our previous
Lego LHR design [10].
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